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The human body is colonized by millions of 
microorganisms, which are not only ‘passive resi-
dents’ but also play an extremely important role in 
maintaining homeostasis [1]. The term ‘microbiota’ 
refers to all the microorganisms living in a par-
ticular environment. The commonly used term 
‘microbiome’, on the other hand, is defined as the 
ensemble of genomes of the microbiota consid-
ered in terms of the modulatory factors and inter-
actions among them. The above term was coined 
microbiome by Joshua Lederberg in 2001. Another 
important term is ‘dysbiosis’, which means altera-
tions in the number, composition and function of 
the microflora [2]. Variably intensified imbalance  
of commensal flora is observed virtually in every pa-
thology and is always accompanied by dysfunction 
of the immune system [3–5]. Therefore, a detailed 
understanding of the relationships between the 
microbiome and functioning of individual systems 
allows implementing the most appropriate treat-
ment, both pharmacological and dietary. 

THE GUT MICROBIOME
The human gastrointestinal (GI) tract is colo-

nized by more than 100 trillion bacteria, both com-
mensal and pathogenic, affecting homeostasis. 
The gut microbiome consists of four main phyla, 
which include Bacteroides (23%), Firmicutes (64%), 
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Actinobacteria (3%) and Proteobacteria (8%) [6, 7]. 
It is worth noting that the composition of micro-
flora varies depending on the GI segment and age 
of an individual [6]. The lowest number of bacteria 
is found in the stomach due to its low pH, mostly 
different species of the genera Lactobacillus, Veillo­
nella and Helicobacter [7]. The major bacterial fami-
lies found in the small intestine include Bacilli, Acti­
nobacteria, Streptococcaceae, Actinomycinaeae and  
Corynebacteriaceae while Bacteroidetes predominate 
in the large intestine [7, 8]. The composition and 
activity of the gut microbiome is affected by diet, 
lifestyle, environment, and genetic conditions [9].  
The gut microbiome plays an important role in nu-
trient absorption, synthesis of vitamins (K, B1, B6, B12, 
folic acid), amino acids, enzymes, and production of 
short-chain fatty acids (SCFA). For instance, cellulose 
and pectin are converted into SCFA and simple sug-
ars. By-products, including acetate, propionate and 
butyrate, are involved in the production of energy in 
cells, strengthen the integrity of the epithelial bar-
rier and play an essential role in immunomodulation 
and protection against pathogens. Scientific studies 
have shown that up to 10% of the energy supplied 
can come from the above metabolic processes,  
e.g. butyrate is an important energy source for cells 
in the large intestine. Furthermore, butyrate stimu-
lates the production of cathelicidin, which shows 
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Abstract
In recent years commensal microorganisms are not just “passive occupants”, but impor­
tant element of homeostasis. There are numerous reports documenting the composi­
tion and role of the gut, skin or vagina microbiome but the role of commensal orga­
nisms living in the lungs is relatively unknown. Pulmonary microbiome impact on the 
immune response of the host organism and may indicate new therapeutic directions. 
Lung microbiome, by modulating the expression of innate immunity genes, causes 
an increase in the concentration of interleukin (IL)-5, IL-10, interferon γ and C-C motif 
chemokine ligand 11, affects the toll-like receptor-4-dependent response of pulmo­
nary macrophages and modulate the production of antibacterial peptides contained in  
the mucus. It is documented that disorders of the lung microbiome contribute to asthma 
or chronic obstructive pulmonary disease. However it is known that pulmonary dysbio­
sis also occurs in critically ill patients. It is possible, therefore, that microbiota-targeted 
therapy may constitute the future therapeutic direction in ICU. 
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antibacterial properties [10]. The GI microflora plays 
an equally important role in maintaining homeo-
stasis of the immune system. The immune system 
of the GI tract has an exceptional ability to create 
immune tolerance to the ever-changing and huge 
microbiome. Moreover, it is capable of producing  
an effective immune response to pathogens. There-
fore, the largest number of immune cells is found 
in the places colonised by commensal organisms, 
such as the GI tract or skin. Furthermore, the micro-
biome strengthens the intestinal epithelial integrity,  
stimulates the proliferation of enterocytes and mu-
cin, affecting ‘the barrier immunity’ [11, 12]. The bar-
rier formed by the epithelium, mucus, immunoglob-
ulin A (IgA), antimicrobial peptides and immune 
cells is organized around hyperglycosylated mucin 2 
(MUC2), which provides static protection and con-
strains the immunogenicity of gut antigens via the 
dendritic cells. Moreover, the intercellular junctions 
and the mucus produced by the goblet cells form an 
important barrier limiting the translocation of mi-
crobes [13]. Scientific studies have shown that the 
gut microbiome affects the production of secretory 
IgA antibodies and cationic antimicrobial peptides 
(CAMPs) by the epithelial cells, which addition-
ally maintain the function of the mucosal barrier  
[14, 15]. The production of regenerating islet-derived 
protein 3-gamma (Reg III-γ), the expression of which 
begins immediately after birth, is controlled by the 
flora in a myeloid differentiation primary response 
gene 88 (MyD88)-dependent manner and has the di-
rect bactericidal effect on Gram-positive pathogens 
[16, 17]. Moreover, antimicrobial peptides have the 
potential to maintain the microbiome-intestine bar-
rier [18]. Commensal bacterial antigen-specific IgA 
is produced by the dendritic cells in the GI tract [19]. 
IgA interacts with B and T lymphocytes in Peyer’s 
patches [19]. Of note, IgA responses lack classical 
memory characteristics and can address the changes 
in the microflora composition [20].

THE LUNG MICROBIOME
In recent years, the belief that the lungs are 

“sterile” has been denied, although the role of com-
mensal organisms inhibiting the lungs has not been 
explicitly documented. It is known, however, that 
during micro-aspiration of nasopharyngeal con-
tent or in cases of gastro-oesophageal reflux to the 
alveoli, microorganisms are constantly “supplied”  
[21, 22]. Studies in animals and healthy volunteers 
have demonstrated that the composition of the 
lung microbiome is different from that of the oral 
and gut microbiome [23, 24]. The exact composi-
tion of the lung microbiome is difficult to be deter-
mined, as difficulties in ideal sampling of materials 
significantly limit its reliability. The key factor affect-

ing the reliability of bronchoscopic samples is their 
contamination with the nasopharyngeal bacterial 
flora. The difficulties in collecting the microbial ma-
terial, representing a reliable composition of the 
lower respiratory tract microbiome, are lesser in 
intubated patients [24]. According to some reports, 
only highly invasive methods, such as an open lung 
biopsy, allow the examiner to obtain a reliable test-
ing material [25]. The lung microbiome is a dynamic 
ecosystem that consists of a variety of commensal 
microorganisms, mostly bacteria whose distribu-
tion depends on the part of the respiratory system. 
Moreover, there is a complex integrity between the 
upper and lower respiratory tract microbiomes, 
which may be confirmed by the fact that Firmicutes, 
Bacteriodetes, Proteobacteria, Fusobacteria and Acti­
nobacteria predominate in healthy lungs [26–30].  
It is worth stressing that the density of the pulmo-
nary microbiome is low, ranging from 103–105 CFU g-1 
tissue under physiological conditions [31, 32]. 
Animal studies have revealed that the airway flora 
formed during the first weeks of life is crucial for 
the development of a properly functioning immune 
system. This flora affects the Helios (–) regulatory  
T cells (Tregs) and reduces the susceptibility to aller-
gic respiratory diseases [33]. Early formation of the 
microbiome also affects the stability of microflora 
in the upper respiratory tract and lower susceptibil-
ity to infectious diseases [34]. Numerous observa-
tions have shown a close relationship between the 
upper and lower respiratory tract microbiomes, 
especially in acute and chronic inflammations, 
such as obstructive pulmonary disease or cystic fi-
brosis [35–38]. The above correlation is associated 
with microaspiration, especially in cases of gastro-
oesophageal reflux disease or disorders of airway 
cleansing [35]. The respiratory microflora induces 
the differentiation of peripheral Tregs, which are 
essential for controlling type 2 immune responses. 
Experimental studies have revealed a significant 
relationship between the natural killer T cells (NKT 
cells) and the microbiome [39, 40]. In the absence 
of airway microflora, increased numbers of eosino-
phils and type 2 T helper (TH2) lymphocytes have 
been observed in animal lungs [39, 40]. The lung 
microbiome is believed to modulate the expression 
of immune cell genes by affecting an increase in in-
terleukin-5 (IL-5), interleukin-10 (IL-10), interferon γ 
(IFN-γ), C-C motif chemokine ligand 11 (CCL11) and 
toll-like receptor-4 (TLR4)-dependent responses of 
the lung macrophages [41] (Figure 1).

The microbiome also affects the production of 
antibacterial peptides and proteins (AMPs) in the 
mucus, which are responsible for inhibiting the mul-
tiplication of pathogenic bacteria and for protecting 
the epithelium [42]. When the lung microbiome is 
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absent or impaired, the production of these pro-
teins is reduced and the susceptibility to infections 
caused by Pseudomonas aeruginosa, Streptococcus 
pneumoniae or Klebsiella pneumoniae is increased 
[43–45]. Of note, in the lungs of animals with the 
normal microbiome, the number of alveoli was 
found to be increased [31]. Moreover, it has been 
revealed that the presence of Proteobacteria in-
creases the risk of developing asthma, partly due to 
an increased risk of viral infections, especially in the 
lower airways. Viral infections induce the release of 
thymic stromal lymphopoietin (TSLP), an epithelial 
cytokine (alarmin), IL-33 and IL-25 from the airway 
epithelium, causing type 2 inflammation [46].

THE GUT MICROBIOME AND THE RESPIRATORY SYSTEM 
The gut microbiome harbours the largest and 

most diverse array of commensal bacteria, which 
shapes the host immune response [47]. It is stressed 
that imbalance of the gut microflora can affect dis-
tant organs, e.g. the brain, liver, skin or heart [48]. 
Such an imbalance can also contribute to various 
types of subsequent diseases such as post-trau-
matic stress disorder in patients with multiple or-
gan injuries [49, 50]. Moreover, a highly significant 
association has been demonstrated between the 
gut microbiome and respiratory diseases [21, 51].  
It is worth stressing, however, that not only the gut 
microbiome itself, but also its metabolites can stim-
ulate the immune system within the lungs, form-
ing the gut-lung axis [51, 52]. Metabolites, such as 
SCFA, have been shown to exert a systemic effect 
by stimulating the formation of antigen-presenting 
cells (APCs) filling the airway that induce the type 2 
response to a lesser extent [53]. 

Pro-inflammatory metabolites of the dysbiotic 
gut microflora may also play an important role in 
inducing abnormal immune responses in the air-

ways. Experimental studies have shown that the 
administration of lipopolysaccharide into the bron-
chial tree causes dysbiosis in the lungs, which leads 
to disorders of homeostasis within the gut microbi-
ome [54]. Moreover, it has been documented that 
pneumonia caused by multiple drug resistance 
(MDR) pathogens, Staphylococcus aureus or Pseudo­
monas aeruginosa, contributes to endothelial dam-
age and alterations in the gut microbiome [55]. In 
turn, gastrointestinal dysbiosis, especially in child-
hood, contributes to the development of asthma 
[56]. In children with a confirmed risk of asthma, 
a decreased amount of Rothia, Faecalibacterium, 
Lachnospira and Veillonella was observed in the GI 
tract [57]. Experiments in mice have demonstrated 
that colonization with the above microorganisms 
and with their metabolites, contributes to a milder 
course of allergic airway inflammation [58]. Dietary 
fibre is fermented by commensal bacteria in the 
colon to SCFAs that have anti-inflammatory effects, 
maintain gut homeostasis and epithelial integrity, 
regulate the Treg pool [58–60]. Animals receiving 
a high-fibre diet have been found to increase the 
production of SCFAs, including acetate, by the gut 
microflora, associated with the inhibition of inflam-
mation in the airway. Based on the study results, 
acetate has been demonstrated to increase the 
acetylation of forkhead box P3 (FOXP3) by inhibiting 
histone deacetylase 9 (HDAC9) [61]. This relation-
ship is most likely related to the activation of signal-
lers of acetate-binding GPR 43 as an increased level 
of acetate in the intestinal loops, e.g. due to the diet 
used, induces the differentiation of Treg cells and 
inhibits histone deacetylase [61]. It should be em-
phasised that the number and functionality of Tregs 
in asthma is reduced [62]. Subsequent studies have 
revealed that diets rich in fibre, acting on the den-
dritic cells and macrophage precursors, stimulate 
the production of propionate by the microbiome, 
which reduces the inflammatory response induced 
by Th2 lymphocytes. In turn, butyrate inhibits the 
activation of IL-5, IL-13, and group 2 innate lym-
phoid cells (ILC2s), alleviating the symptoms of aller-
gic pneumonia [63]. Thus, SCFAs produced by bacte-
rial fermentation of dietary fibre modulate oxidative 
phosphorylation, glycolytic pathways in pulmonary 
ILC2s and GATA binding protein 3 (GATA3), affecting 
the production of IL-17a and recruitment of neutro-
phils into the airway [61–63] (Figure 2).

THE LUNG MICROBIOME IN CRITICALLY ILL PATIENTS 
Recently, considerable attention has been de-

voted to microbiome imbalance in the context of 
intensive care. In critically ill patients, the gut mi-
crobiome and the lung microbiome undergo pro-
found changes. Dysbiosis in critically ill patients has 

Lung microbiome

IL-17

G-CSF
CXCL
IL-6

IL-1b
IL-23

Increase in the number  
of neutrophils and Th17 

Increase in the number 
of lymphocytes T

AIR

FIGURE 1. Changes in the lung microbiome alter the allergic re-
sponse in the airways 
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a complex background. In order to explain impaired 
homeostasis of the lung microbiome, Dickson et al. 
have suggested three mechanisms influencing the 
composition and homeostasis of the microbiome 
[64]. The first is associated with the effects of migra-
tion, elimination, and reproduction of commensal 
microorganisms on the composition of the lung 
microflora. In this case, the factors determining 
microbiome reproduction are oxygen pressure, 
pH, blood flow, alveolar ventilation, temperature, 
and immune cells [30, 64]. In sepsis and acute re-
spiratory distress syndrome (ARDS), the ongoing 
inflammatory process changes the physicochemi-
cal environment (pH, oxygen pressure, presence 
of free radicals) and alveolar metabolism. Areas of 
lung atelectasis and oedema promote an increase in 
the number of pathogenic microbes and ultimately 
lead to the development of pneumonia [65]. Fur-
thermore, the oxygen concentration used during 
therapy has been shown to affect the community of 
bacteria in the lungs of animals and humans. Recent 
studies have revealed that hyperoxia causes a selec-
tive increase in Staphylococcus aureus in critically ill 
patients and an altered composition of the micro-
biome contributes to the development of pneumo-
nia and organ damage [66]. The second mechanism 
assumes the influence of dietary factors; in healthy 
individuals, their airways are mainly filled with air 
and the availability of nutrients for bacteria is rela-
tively limited [67]. Note, however, that in patients 
with chronic lung diseases, such as cystic fibrosis, 
chronic bronchitis or asthma, the airways contain 
dense, protein-rich mucus. Moreover, in ARDS or 
pneumonia, the alveoli are “flooded” with protein-
rich fluid due to damage to the alveolar-capillary 
barrier, which seems to affect the lung microbiome 
[68]. The third mechanism is most likely related to 
intercellular signalling at the molecular level, which 
can be influenced by glucocorticoids, oestrogens, 
androgens, neurotransmitters (catecholamine, en-
dogenous opioids) and cytokines such as TNF, IL-1, 
IL-6 and IL-8 [69, 70]. Imbalance in the lung microbi-
ome is observed in asthma and chronic obstructive 
pulmonary diseases, as well as in critically ill patients 
without prior diseases [9, 71, 72] (Figure 3). 

The lung microbiome imbalance is believed 
to be affected by antibiotic therapy, endotracheal 
intubation itself and mechanical ventilation of the 
lungs [73–75]. The available studies have shown 
that the lung microbiome is enriched with gut mi-
crobes through bacterial translocation facilitated 
by increased intestinal and alveolar permeability 
in ARDS and sepsis. The presence of Bacteroidetes 
and Enterobacteriaceae in the lungs of seriously ill 
patients, which are characteristic of the gut micro-
biome, correlates with an increased inflammatory 

response and may affect the development of ARDS  
[3, 76, 77]. In cases of increased intestinal and al-
veolar endothelial permeability, bacteria migrate 
through the lymphatic system, systemic or portal cir-
culation. The translocation of intestinal bacteria into 
the lungs is a mechanism potentially affecting the 
development of lung dysbiosis, inflammation and ul-
timately lung damage, e.g. associated with mechani-
cal ventilation (called vaping-associated lung injury 
– VALI) [35]. Early lung dysbiosis in mechanically 
ventilated patients has been associated with an in-
crease in inflammatory markers – IL-6 and IL-8 – and 
is strongly related to the development of late ARDS 
[77, 78]. The observed changes are also responsible 
for clinically relevant systemic disorders [32, 76].  
The presence of artificial airways contributes to con-
tinuous micro-aspiration of the oropharyngeal flora 
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FIGURE 3. The lung microbiome can undergo modifications re-
sulting from improper diet, ongoing infection, antibiotic therapy, 
cigarette smoking and mechanical ventilation of the lungs in cases 
of airway pathologies
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and impaired mechanisms of purification of the 
respiratory tract. It should also be noted that the 
intubation procedure and mechanical ventilation 
promote micro-aspiration to the lungs, and the pres-
ence of an endotracheal tube significantly impairs 
the removal of bronchial tree secretions [75, 76]. 
In critically ill patients undergoing mechanical ven-
tilation, the diversity of bacteria decreases, and 
opportunistic pathogens can become dominant. 
Therefore, VALI, considered according to traditional 
physiopathology, should be modified. Ventilator-
associated pneumonia (VAP) should be addressed 
in terms of the presence of a microbiome and dys-
biosis associated with broad-spectrum antibiotic 
therapy, as well as the need to include molecular 
techniques to diagnose and accelerate the use of 
immunomodulatory drugs or probiotics for preven-
tion and treatment [74, 79]. Another important fac-
tor influencing the lung microbiome in critically ill 
patients is antibiotic therapy. Broad-spectrum anti-
biotic therapy disrupts the homeostasis of the mi-
crobiome and affects the development of mechani-
cal ventilation-induced lung injury (VILI) [74, 80]. 
It is worth noting that impaired homeostasis of 
the lower airway microbiome is associated with an 
increased risk of pneumonia [35]. In HIV-infected 
patients, a close link has been observed between 
dysbiosis, versus increased Prevotella–Veillonella 
populations and the risk of severe pneumonia [81]. 
Moreover, the use of antibiotics, low diversity of the 
intestinal microbiome and enrichment of the gut 
microbe with Gammaproteobacteria increase the 
risk of pulmonary complications in patients after 
hematopoietic stem-cell transplantation (HSCT) 
[82]. Commensal microorganisms can also cause 
pneumonia, as in the case of Staphylococcus epi­
dermidis [83]. This fact seems to prove a close link 
between the upper and lower airway microbiome 
and interactions with the population of the entire 
microbiome [35]. Clinical studies have demon-
strated a significant correlation between the sever-
ity of ischaemic-reperfusion syndrome, versus im-
paired homeostasis of the microbiome, activation 
of the immune system, and epithelial damage [58].  
The multiplication of Enterobacteriaceae, accompa-
nied by a persistent inflammatory process, seems 
of particular importance [84]. Following ischaemic-
reperfusion injury, the bacteria characteristic of 
the intestinal flora are detected in the lungs, serum 
and mesenteric cells [85, 86]. These bacteria use 
the activation of TLR 2, TLR 4 and MyD88, inducible 
nitric oxide synthase (iNOS) and reactive oxygen 
species to damage the cells. However, it should be 
stressed that IL-22 signalling and signal transducer 
and activator of transcription 3 (STAT3) protect the 
epithelial barrier of the intestines and can prevent 

translocation of Enterobacteriaceae following burn 
trauma. Additionally, IL-22 reduces inflammation in 
the lungs [87]. The impact of nutrition on the micro-
biome in ICU patients has been an important issue 
dealt with in many reports over recent years. Diet, 
quantity and type of individual nutrients affect the 
species composition of the gut microflora, modulate 
the number of individual species and their functions 
as a microbiome [88, 89]. Diets high in animal pro-
tein and fats has been found to lead to an increase in 
the number of Bacteroides in the composition of the 
gut microbiome, as compared to carbohydrate-high 
diets, leading to the dominance of Prevotella [90]. 
Moreover, dietary fibre affects the composition and 
metabolism of the microbiome. Low fibre intake 
endangers the mucous layer in the GI tract, caus-
ing microbiological instability accompanied by an 
increase in pathogenic strains and production of 
potentially harmful metabolites [91]. It should be 
stressed that in mice with a phenotype associated 
with high fat content and obesity, an increased 
number of Firmicutes and Proteobacteria as well as 
a reduced number of Bacteroidetes have been ob-
served in the microbiome. Weight loss restores the 
original configuration by limiting fats and carbo-
hydrates [92]. Recent studies have shown that the 
way nutritional therapy is conducted also diversely 
affects the microbiome [93]. Total parenteral nutri-
tion changes the gut microbiome by increasing the 
number of Proteobacteria [94]. In animals receiving 
total parenteral nutrition, the altered composition 
of the intestinal lumen has favoured dysbiosis and 
dysfunction of the epithelial barrier [94]. Parenteral 
nutrition and fasting are associated with a loss of 
bacterial diversity that can change the interactions 
of the microbiome with the host immune system 
and the ability to control increases in the num-
ber of potentially more pathogenic bacteria, e.g.  
Escherichia coli, Salmonella, Yersinia and Helico­
bacter, fostering increased expression of pro-in-
flammatory cytokines in the intestinal mucosa [95]. 
Such disorders can lead to an increased risk of pneu-
monia caused by Streptococcus pneumoniae [80].  
The mechanisms responsible for the above changes 
include lower expression of alkaline phosphatase 
in the enterocytes or activation of TLR receptors 
leading to the expression of tumour necrosis factor 
receptor (TNFR) in the epithelial cells, lower expres-
sion of cytoskeleton proteins and increased bacte-
rial translocation [96]. Moreover, animals receiving 
total parenteral nutrition have demonstrated in-
creased expression of interferon-g in the intestinal 
epithelium [97]. On the other hand, enteral nutrition 
has been found to exert anti-inflammatory effects, 
as reflected in decreased concentrations of pro- 
inflammatory cytokines, TNF-α and IL-6, in serum 
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and increased concentrations of anti-inflammatory 
cytokine IL-10, which is associated with lower mor-
tality rates [93, 98]. 

THERAPEUTIC DIRECTIONS
Numerous studies have demonstrated that 

maintaining the microbiome balance can be an-
other important therapeutic direction in critically 
ill patients treated in intensive care units. Intesti-
nal microflora-targeted dietary interventions can 
potentially improve clinical outcomes, taking into 
account the connection between the GI tract and 
the respiratory system. In medical practice, the ef-
fects of nutrients on the microflora are neglected. 
Therefore, the purpose of nutritional therapy, espe-
cially in critically ill patients, should be broadened. 
Fibre-rich diets alter the microbiome in the GI tract 
or respiratory system and increase the concentra-
tion of SCFAs in the blood, reducing the inflamma-
tory process associated with allergies and mortality 
rates in lung diseases [14, 99–101], as dietary fibre is 
a product consumed by commensal bacteria for the 
biosynthesis of SCFAs [102]. In patients with asthma, 
the diet has been shown to affect the systemic in-
flammatory response and the diet rich in fruit and 
vegetables exerts positive effects on the ongoing 
diseases [103, 104]. Analysis of the reports available 
in literature has revealed that the use of probiotics 
in ICUs reduces the incidence of ventilator-associ-
ated pneumonia without affecting the mortality 
and length of hospitalization [105]. Supplementa-
tion with probiotic bacteria such as Lactobacillus 
rhamnosus, Bifidobacterium lactis and B. breve, af-
fects the inflammatory response to allergic lung 
diseases [106, 107]. Moreover, the use of Lactobacil­
lus rhamnosus and Bifidobacterium breve in smokers 
with COPD inhibits the release of pro-inflammatory 
mediators by macrophages in response to cigarette 
smoke [108]. Moreover, it should be highlighted that 
probiotics have immunomodulatory effects, stimu-
lating the natural smoking-suppressed activity of NK 
cells [109]. When analysing the treatment adminis-
tered in critically ill patients, the effect of antibiotic 
therapy and steroid therapy on the lung microbi-
ome should be considered. Inadequate antibiotic 
therapy in patients treated for COPD exacerbations 
has significantly impaired homeostasis of the lung 
microbiome [110–112]. Furthermore, it has been 
documented that the antibiotics reduce the num-
ber and diversity of microflora, while steroid therapy 
increases the number of Moraxellaceae, Pasteurella­
ceae, Pseudomonadaceae and Enterobacteriaceae 
[113]. Combined steroid and antibiotic therapies 
have resulted in a significant increase in Proteobacte­
ria in the lungs [114]. However, the above disorders 
seem to occur only in critically ill patients, as in pa-

tients with mild to moderate asthma, the Proteobac­
teria family dominates, suggesting that dysbiosis is 
independent of steroid therapy [113]. Nevertheless, 
the observations in question come from the stud-
ies carried out in a small population of patients and 
have to be confirmed in multicentre studies.

CONCLUSIONS
The lung microbiome plays an important role in 

lung diseases. The interactions between impaired 
lung and gut microbiomes seem to be essential 
for the management of patients in intensive care 
units. Demonstrating such interactions should also 
elucidate the mechanism of the gut–lung axis and 
suggest a new therapeutic direction, fundamentally 
changing the treatment of critically ill patients. 
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